top of page
Search
Writer's pictureDR.GEEK

Cryptographic hash

( 27th July 2019 )

A cryptographic hash function is a special class of hash function that has certain properties which make it suitable for use in cryptography. It is a mathematical algorithm that maps data of arbitrary size to a bit string of a fixed size (a hash) and is designed to be a one-way function, that is, a function which is infeasible to invert. The only way to recreate the input data from an ideal cryptographic hash function's output is to attempt a brute-force search of possible inputs to see if they produce a match, or use a rainbow table of matched hashes. Bruce Schneier has called one-way hash functions "the workhorses of modern cryptography". The input data is often called the message, and the output (the hash value or hash) is often called the message digest or simply the digest.

The ideal cryptographic hash function has five main properties:

it is deterministic so the same message always results in the same hash

it is quick to compute the hash value for any given message

it is infeasible to generate a message from its hash value except by trying all possible messages

a small change to a message should change the hash value so extensively that the new hash value appears uncorrelated with the old hash value

it is infeasible to find two different messages with the same hash value


Figure: Cryptographic hash functions

Cryptographic hash functions have many information-security applications, notably in digital signatures, message authentication codes (MACs), and other forms of authentication. They can also be used as ordinary hash functions, to index data in hash tables, for fingerprinting, to detect duplicate data or uniquely identify files, and as checksums to detect accidental data corruption. Indeed, in information-security contexts, cryptographic hash values are sometimes called (digital) fingerprints, checksums, or just hash values, even though all these terms stand for more general functions with rather different properties and purposes.

Properties

Most cryptographic hash functions are designed to take a string of any length as input and produce a fixed-length hash value.

A cryptographic hash function must be able to withstand all known types of cryptanalytic attack. In theoretical cryptography, the security level of a cryptographic hash function has been defined using the following properties:

Pre-image resistance

Given a hash value h it should be difficult to find any message m such that h = hash(m). This concept is related to that of a one-way function. Functions that lack this property are vulnerable to preimage attacks.

Second pre-image resistance

Given an input m1, it should be difficult to find a different input m2 such that hash(m1) = hash(m2). Functions that lack this property are vulnerable to second-preimage attacks.

Collision resistance

It should be difficult to find two different messages m1 and m2 such that hash(m1) = hash(m2). Such a pair is called a cryptographic hash collision. This property is sometimes referred to as strong collision resistance. It requires a hash value at least twice as long as that required for pre-image resistance; otherwise collisions may be found by a birthday attack.

Collision resistance implies second pre-image resistance, but does not imply pre-image resistance. The weaker assumption is always preferred in theoretical cryptography, but in practice, a hash-function which is only second pre-image resistant is considered insecure and is therefore not recommended for real applications.

Informally, these properties mean that a malicious adversary cannot replace or modify the input data without changing its digest. Thus, if two strings have the same digest, one can be very confident that they are identical. Second pre-image resistance prevents an attacker from crafting a document with the same hash as a document the attacker cannot control. Collision resistance prevents an attacker from creating two distinct documents with the same hash.

A function meeting these criteria may still have undesirable properties. Currently popular cryptographic hash functions are vulnerable to length-extension attacks: given hash(m) and len(m) but not m, by choosing a suitable m' an attacker can calculate hash (m || m') where || denotes concatenation. This property can be used to break naive authentication schemes based on hash functions. The HMAC construction works around these problems.

In practice, collision resistance is insufficient for many practical uses. In addition to collision resistance, it should be impossible for an adversary to find two messages with substantially similar digests; or to infer any useful information about the data, given only its digest. In particular, a hash function should behave as much as possible like a random function (often called a random oracle in proofs of security) while still being deterministic and efficiently computable. This rules out functions like the SWIFFT function, which can be rigorously proven to be collision resistant assuming that certain problems on ideal lattices are computationally difficult, but as a linear function, does not satisfy these additional properties.

0 views0 comments

Recent Posts

See All

Comments


bottom of page